Белое вещество полушарий большого мозга состоит из проекционных, ассоциативных и комиссуральных путей.
I. Проекционные нервные волокна, neurofibrae projectiones, соединяющие кору полушарий с нижележащими центрами и передающие импульсы к коре (восходящие волокна), и от коры (нисходящие волокна).
II. Ассоциативные нервные волокна, neurofibrae associationes, соединяют между собой различные участки коры в пределах одного и того же полушария.
- Ассоциативные пути полушарий делятся на короткие и длинные.
- Короткие ассоциативные пути представлены дугообразными волокнами большого мозга, fibrae arcuatae cerebri, соединяющими смежные извилины.
- Ассоциативные пути; верхнелатеральная поверхность
правого полушария. - К длинным ассоциативным путям относятся следующие:
- 1) верхний продольный пучок, fasciculus longitudinalis superior, соединяющий лобную, затылочную и теменную доли;
- 2) нижний продольный пучок, fasciculus longitudinalis inferior, связывающий затылочную долю с височной;
- 3) крючковидный пучок, fasciculus uncinatus, соединяющий кору области лобного полюса с крючком височной доли и смежными с ним извилинами;
- 4) пояс, cingulum, который соединяет область обонятельного треугольника и подмозолистое поле с крючком.
III. Комиссуральные нервные волокна, neurofibrae commissurales, представлены волокнами, которые соединяют одинаковые участки различных полушарий. К ним относятся мозолистое тело, передняя спайка и спайка свода.
1. Мозолистое тело, corpus callosum, открывается в глубине продольной щели после удаления верхней части полушарий большого мозга. Это белого цвета удлиненное и несколько уплощенное образование, вытянутое спереди назад, длиной 7— 9 см.
Мозолистое тело — самая большая спайка (комиссура) новых отделов полушарий головного мозга, так как соединяет серое вещество полушарий большого мозга более позднего в филогенетическом отношении происхождения— новую кору (за исключением височных полюсов).
Передний отдел мозолистого тела загибается вперед, вниз и затем назад, образуя колено мозолистого тела, genu corporis callosi, переходящее книзу в клюв мозолистого тела, rostrum corporis callosi. Последний продолжается в концевую пластинку, lamina terminalis.
- Средний отдел мозолистого тела — ствол, truncus corporis callosi, образует выпуклость в продольном направлении и является наиболее длинной его частью.
- Задний отдел мозолистого тела — валик, splenium, утолщен, свободно нависает над шишковидной железой и над пластинкой крыши среднего мозга.
- Мозолистое тело, corpus callosum,
- и лучистость мозолистого тела, radiatio corporis callosi; вид сверху.
- На верхней поверхности мозолистого тела располагается тонкий слой серого вещества — серый покров, indusium griseum, который в некоторых участках образует четыре небольших продольно идущих утолщения в виде полосок, striae, по две с каждой стороны от срединной борозды.
- Различают две медиальные продольные полоски, striae longitudinales mediates, и две латеральные продольные полоски, striae longitudinales laterales.
В переднем отделе мозолистого тела часть серого вещества переходит в области клюва в паратерминальную извилину. Латеральная продольная полоска в заднем отделе, огибая нижнюю поверхность утолщения мозолистого тела, продолжается в серую полоску — ленточную извилину, gyrus fasciolaris, и переходит на медиальную поверхность парагиппокампальной извилины как зубчатая извилина.
Кроме продольно идущих полосок, на верхней поверхности мозолистого тела имеется ряд поперечных полосок, хорошо выраженных между латеральными и медиальной продольными полосками.
На горизонтальном срезе полушария мозга, проведенном на уровне верхней поверхности мозолистого тела, отчетливо видно расположение белого вещества в виде полуовала. По периферии белое вещество окаймлено слоем серого вещества, образующего кору большого мозга.
Отходящие от мозолистого тела волокна, расходясь радиально в толще каждого полушария, образуют лучистость мозолистого тела, radiatio corporis callosi. В ней соответственно долям мозга различают лобную, теменную, височную и затылочную части.
Задние отделы лучистости, преимущественно в области затылочной части, истончаются и являются верхней стенкой — крышей — нижнего и заднего рогов каждого бокового желудочка.
Волокна мозолистого тела, которые проходят через клюв и колено в сторону лобных долей и сзади через утолщение мозолистого тела в сторону затылочных и задних отделов теменных долей, дугообразно изогнуты, причем их вогнутости обращены друг к другу. Поэтому они получили название затылочных щипцов (большие щипцы), forceps occipitalis (major), и лобных щипцов (малые щипцы), forceps frontalis (minor).
2. Передняя спайка, commissura rostralis (anterior), располагается позади концевой пластинки и делится на две части: переднюю часть, pars anterior, соединяющую между собой крючки обеих височных долей, и заднюю часть, pars posterior, более развитую, связывающую парагиппокампальные извилины.
3. Спайка свода, commissura fornicis, в виде треугольной пластинки располагается под утолщением мозолистого тела между ножками свода.
- Свод, fornix, и спайка свода, commissura fornicis;
- вид снизу и несколько спереди.
IV. Свод, fornix, входящий в систему обонятельного мозга, также относится к белому веществу полушарий большого мозга. Это сильно изогнутый удлиненный тяж, почти весь состоящий из продольных волокон. В нем различают тело, ножки и столбы.
Тело свода, corpus fornicis, своей средней, наиболее утолщенной частью располагается под мозолистым телом.
На фронтальном разрезе мозга тело свода имеет форму трехгранной призмы. Его верхняя поверхность срастается с нижним краем прозрачной перегородки и с нижней поверхностью мозолистого тела.
У бокового края тела свода располагается сосудистое сплетение бокового желудочка, с эпителиальным листом которого этот край срастается, образуя ленту свода, tenia fornicis. Последняя продолжается вдоль ножки свода в нижний рог бокового желудочка.
- Боковые, обращенные косо вниз поверхности тела свода свободно прилегают к таламусам, к их верхним поверхностям и медиальным верхним краям.
- Закругленный нижний край тела свода лежит над сосудистой основой III желудочка.
- Задний отдел свода — правая и левая ножки свода, crura fornicis,— срастается с нижней поверхностью мозолистого тела спереди от его валика.
Позади таламуса ножки свода расходятся, загибаются латерально книзу и каждая из них входит в нижний рог соответствующего бокового желудочка. Здесь каждая ножка свода, следуя по ходу гиппокампа до его крючка, переходит в бахромку гиппокампа, fimbria hippocampi, располагаясь между медиально лежащей зубчатой извилиной и латерально расположенным гиппокампом.
Обе ножки свода от начала своего расхождения и до погружения в нижний рог соединяются треугольной тонкой пластинкой. Вершина этой пластинки направлена кпереди, основание— кзади.
Пластинка состоит из поперечно идущих волокон, хорошо выраженных у основания.
Эта пластинка получила название спайки свода, commissura fornicis, ее пучки соединяют между собой правый и левый гиппокампы.
Передние отделы свода несколько расходятся и, образуя выпуклую кверху дугу, переходят в столбы свода, columnae fornicis.
Они располагаются кзади от передней спайки и над передними отделами таламусов, так что между каждым столбом и таламусом образуется полулунная щель — межжелудочковое отверстие.
Этот отрезок столбов носит название свободной части столбов свода.
Каждый столб свода, загибаясь позади передней спайки, направляется вниз и погружается в вещество гипоталамуса, ближе к медиальной поверхности таламусов, т. е. ближе к полости III желудочка. Далее каждый столб входит в соответствующее сосцевидное тело. Этот отрезок столбов называется скрытой частью столба свода.
- Таким образом, свод простирается от гиппокампа до сосцевидных тел.
- В сосцевидном теле берут начало нервные волокна, которые направляются в толщу таламуса в виде главного пучка сосцевидного тела.
- Одна часть волокон следует к клеткам передних ядер таламуса, образуя сосцевидно-таламический пучок, fasciculus mamillothalamicus.
- Другая часть главного пучка образует сосцевидно-покрышечный пучок, fasciculus mamillotegmentalis, волокна которого заканчиваются в клетках ядер покрышки.
- Белое вещество полушарий образует между подкорковыми ядрами ряд прослоек, называемых капсулами
- 1) самая наружная капсула, capsula extrema, расположена между корой островка и оградой;
- 2) наружная капсула, capsula externa, располагается между оградой и чечевицеобразным ядром;
- 3) внутренняя капсула, capsula interna, отделяет чечевицеобразное ядро от хвостатого ядра и таламуса.
- Через внутреннюю капсулу проходят все проекционные волокна полушарий, которые в белом веществе полушарий образуют лучистый венец, corona radiata.
- Во внутренней капсуле различают переднюю ножку внутренней капсулы, crus anterius capsulae internae, колено внутренней капсулы, genu capsulae internae, и заднюю ножку внутренней капсулы, crus posterior capsulae internae.
- Внутренняя капсула.
- Передняя ножка внутренней капсулы образована лобно-мостовымпутем, tractus frontopontinus, который связывает кору лобной доли с ядрами моста и входит в состав корково-мостового пути, tractus corticopontinus.
Кроме того, передняя ножка внутренней капсулы содержит передние таламические лучистости, radiationes thalamicae anteriores. В колене внутренней капсулы проходит корково-ядерный путь, tractus corticonuclearis.
- В составе задней ножки внутренней капсулы различают 3 части:
- 1) таламочечевицеобразная часть, pars thalamolentiformis, включает корково-спинномозговые волокна, fibrae corticospinales, корково-красноядерные волокна, fibrae corticorubrales, корково-ретикулярные волокна, fibrae corticoreticulares, корково-таламические волокна, fibrae corticothalamicae, и таламо-теменные волокна, fibrae thalamoparietales, идущие в составе центральных таламических лучистостей, radiationes thalamicae centrales;
- 2) подчечевицеобразная часть, pars sublentiformis, содержит корково-покрышечные волокна, fibrae corticotectales, височно-мостовые волокна, fibrae temporopontinae, а также пучки зрительной и слуховой лучистости, radiationes optica et acustica;
- 3) зачечевицеобразная часть, pars retrolentiformis, включает волокна задних таламических лучистостей, radiationes thalamicae posteriores, и теменно-затылочно-мостовой пучок, fasciculus parietooccipitopontinus.
Источник: http://anatomiya-atlas.ru/?page_id=3095
Серое вещество головного мозга — состав, расположение, функции
В этой статье поговорим о сером веществе, что это, где располагается и какие функции выполняет.
Что это такое и из чего состоит
Головной мозг человека состоит из двух видов нервной ткани – серое вещество и белое. Серое вещество нервной системы – это скопление нервных клеток, отвечающих за большинство функций высшей нервной деятельности человека.
Функция белых клеток – передача электрических импульсов в разные части мозга. Толщина серой ткани мозга достигает порядка половины сантиметра в популяции.
Топографически серое вещество является оболочкой мозга, под ним – скопление длинных отростков (аксонов), то есть вещество белое.
Серое вещество образовано скоплением сом нейронов, малейших капилляров, глиальной ткани и коротких отростков – дендритов. Кроме этого в состав серого вещества входят безмиелиновые длинные отростки – аксоны. В отличие от серого вещества, не имеющего миелиновых волокон, белое вещество потому и называется белым, что цвет ему придают оболочки аксонов, состоящих из миелина.
Ядра серого вещества – это гистологические структуры, концентрическое скопление тел нервных клеток, выполняющее определенную функцию в нервной системе.
Анатомически выделяют два подвида ядер: ядра в топике центральной нервной системе и таковые в структуре периферической нервной системе.
Каждое ядро – это регулятор определенной функции организма, будь это акт мочеиспускания или центр сердцебиения.
Бытует частично ошибочное мнение, что серое вещество состоит из длинных отростков нейронов. Специализированные отростки, оснащенные быстрым проводником миелином, состоят в структуре белового вещества головного и спинного мозга, тогда как в серой субстанции присутствуют лишь дендриты и безмиелиновые длинные волокна.
Суть в том, что в коре миелинизированные длинные аксоны не нужны, ведь серое вещество мозга состоит из скоплений рядом расположенных тел нейронов, и информация из клеток в клетки передается короткими отростками (дендро-дендритные синапсы), ведь основная задача длинных отростков – передача электрического импульса из одного центра в другой. Там функцию передачи и приема информации обслуживают аксо-аксональные, или аксо-дендритные синапсы.
Серое вещество не отличается на всех частях мозга. В различных отделах оно одинаково. Поэтому, к серому веществу конечного мозга относится та совокупность элементов, которая присуща и других структурам мозга.
Где располагается в головном мозгу
На вопрос о том, где находится серое вещество головного мозга, отвечают несколько базовых теоретических медицинских наук – нормальная и топографическая анатомия и гистология. Другие же науки о мозге изучают его функцию, нежели расположение и строение.
Серое вещество представляет собой кору больших полушарий головного мозга.
В среднем слой темной ткани составляет порядка 3-4мм (от 1,5 до 5мм). Наиболее выраженную толщину она имеет в области передней центральной извилины. Благодаря расположению множества извилин и борозд, площадь серого вещества значительно увеличивается. Кроме головного мозга, слой серого вещества располагается внутри спинного мозга.
В мозжечке основная масса серого вещества находится по аналогии с головным мозгом: серое вещество является корой мозжечка и находится на поверхности самой структуры, являясь его оболочкой, когда белое вещество располагается внутри мозжечка. Кроме того, кора координирующего центра организма человека состоит из трех слоев – молекулярный шар, грушевидные нейроны и зернистый слой.
Серую субстанцию, как и другие части мозга, имеет и луковица головного мозга. Продолговатый мозг является одной из первых эволюционно сформировавшихся структур головного мозга. Эта часть располагается на уровне затылочного отверстия, и переходит в спинной мозг.
Серое вещество продолговатого мозга образует некоторые ядра и нервные центры, среди которых – ядра черепно-мозговых нервов и сетчатое образование. К ядрам, образующимся темной тканью, относится подъязычный, добавочный, блуждающий и языкоглоточный нерв.
Следует отметить, что все эти центры не являются низшими, ни высшими центрами регуляции – они занимают промежуточное положение в иерархии регуляторных систем мозга.
Расположенная структура над продолговатым называется мостом. В месте его соединения с соседней структурой выходят несколько нервов, в число которых входит вестибулокохлеарный нерв.
Серое вещество моста образует собственные центры смешанного характера: ядро тройничного нерва, лицевой и отводящий нерв. Такие нервы отвечают за иннервацию лицевых (мимических) мышц, кожу головы (ее волосистую часть), некоторые мышцы глаз и отдельные части языка.
Кроме таких функций, задача Варолиевого моста состоит в поддержании правильной позы и частично сохранности местоположения тела в пространстве.
Серое вещество среднего мозга представлено красными ядрами и черной субстанцией.
Эти структуры являются коллекторами сознательных и бессознательных движений: ядра имеют богатые связи с мозжечком. В целом, эти структуры входят в комплекс стриопадллидарной системы мозга.
Корой, состоящей из серого вещества, покрыты многие структуры головного мозга, среди которых:
- головной мозг;
- мозжечок;
- таламус;
- гипоталамус;
- субталамус;
- бледный шар;
- базальные ганглии;
- скорлупа;
- стволовые структуры мозга (красное ядро и черная субстанция);
- черепно-мозговые нервы.
Напрашивается вывод, что всякая структура, имеющая специфическую регуляторную функцию, покрывается скоплением серой субстанции.
Какую роль выполняет серое вещество
Миллионы лет эволюции, естественного отбора и происхождения видов подарили человеческому существу уникальную структуру – относительно толстую кору головного мозга. Известно, что надлежащим образом структура серого вещества развита лишь у представителей человеческого вида.
В отличие от низших, и даже высших млекопитающих, серая субстанция наделила человека возможностью иметь неповторимое свойство материи, объект изучения всех нейронаук и философии – сознание и самоосознание, вытекающим которых является абстрактное мышление, развитая память, внутренняя речь и множество других специфических атрибутов высшей нервной деятельности человека разумного.
Нужно помнить, что серое вещество – скопление нервных клеток, а именно нейронов. Говоря о функции серого вещества, мы говорим о функции всех скоплений нейронов с короткими отростками.Итак, функции серого вещества разнообразны:
- Физиологические задачи: генерация, передача, получение и обработка электрических сигналов.
- Нейрофизиологические: восприятие, речь, мышление, память, зрение, эмоции, внимание.
- Психологические: формирование личности, мировоззрение, мотивация, воля.
С давних пор ученые задавались вопросом о том, за что отвечает серое вещество головного мозга. Еще в 18 веке Франц Галль обратил внимание на темную мозговую субстанцию. Ученому впервые удалось локализировать некоторые психические функции на коре. Последующие исследование проводилось по типу удаления участка коры и наблюдение того, какая мозговая функция выпала.
Серьезным толчком к дальнейшим исследованиям было изучение работы коры академиком Павловым, который изучал базовые рефлексы и принципы закрепления условного рефлекса. Параллельно ему его французские коллеги нашли речевой центр в коре – нижняя часть лобной извилины.
Современная наука, хоть и знает множество свойств коры головного мозга, утверждает, что процент знаний и ней составляет не более одной тысячной.
Одним белым пятном в эмпирических данных о знании мозга и его формирования является вопрос о том, что такое гетеротопия серого вещества головного мозга.
В частности, часто этот вопрос ставится в области клинической медицины, где лечение есть лишь симптоматическое, то есть убираются одним симптомы.
Как известно, гетеротопия – это дефектное скопление нейронов, остановившихся в определенном месте и не дошедших до своего гистологического места. Так, найдется причина патологии – найдется и этиологическое лечение. Вариантом проявления гетеротопии является детская эпилепсия.
Отличие от белого вещества
Этот раздел предназначен для калибровки понятий и ответа на вопрос о том, что такое серое и белое вещество головного мозга.
Серое вещество
- Сотворено ядрами нервных клеток и его походящих.
- Располагается преимущественно в центральных частях нервной системы.
- Составляет не более 40% всей массы мозга.
- Потребляет порядка 3-5мл кислорода в минуту.
- Структура, несущая регулирующую функцию.
Белое вещество
- Образовано длинными миелинизированными аксонами.
- Имеет расположение преимущественно в периферической нервной системе.
- Составляет более 60% веса головного мозга человека.
- Потребляет менее 1мл кислорода в минуту.
- Отвечает за проведение нервного импульса по нервной системе
Следует помнить, что в отличие структуры коры головного мозга, где серое вещество является оболочкой и покрывает белую субстанцию, в спинном мозге серое вещество окружено белым веществом мозга.
Исследования
Современная наука располагает множеством методов исследования деятельности серой субстанции головного мозга. К таковым можно отнести:
- Регистрация импульсной активности нервных клеток. Регистрация проводится с помощью микроэлектродов, которые, находясь вплотную к клеткам, прикасаются к ним и словно впиваются в них. Таким образом исследуется электрический потенциал нейрона, его вольтаж и амплитуда. Качественные изменения могут характеризовать распад серого вещества.
- Электроэнцефалография. Данный метод позволяет исследовать и зарегистрировать минимальные колебания электрических потенциалов прямо с поверхности черепной коробки. С помощью ЭЭГ изучаются различные ритмы деятельности головного мозга, и является ключевым в исследовании биологических ритмов, в частности сна. Также электроэнцефалография безболезненно позволяет увидеть изменение серого вещества у ребенка. Методика не является инвазивной, в отличие предыдущей.
- Магнитоэнцефалография. МЭГ позволяет изучить синхронную активность полей серого вещества. Ведь часть именно рассинхронизация является причиной многих патологических состояний деятельности центральной нервной системы.
- Позитронно-эмиссионная томография. Этот компьютерный метод дает возможность визуализировать функциональную деятельность коры больших полушарий. ПЭТ позволяет «увидеть» пространственное изображение структуры мозга.
- Ядерная магнитная резонансная интроскопия. С помощью данного метода можно увидеть в мозгу серое вещество, так как ЯМРИ дает картину структуры тканей.
Не нашли подходящий ответ?Найдите врача и задайте ему вопрос!
Источник: https://sortmozg.com/structure/seroe-veshhestvo-golovnogo-mozga
Серое и белое вещество головного мозга и его функции
Строение человеческого организма сложное и уникальное, особенно это актуально для серого и белого вещества головного мозга.
Однако, именно благодаря подобным особенностям люди смогли достичь существующих преимуществ над остальными представителями животного мира. Изучение строения внутричерепных структур, их функций и особенностей еще не закончено.
Однако, знание о расположении и значении для здоровья людей о них помогает специалистам понимать природу заболеваний нервной системы, подбирать оптимальные схемы лечения.
Строение
Каждая клетка головного мозга имеет тело и несколько отростков – длинное волокно у аксона и короткое у дендритов. Именно они своим цветом определяют окраску разных отделов органа. Так, серое вещество в своей структуре содержит нейроны, глиальные элементы и сосуды. Его ответвления не покрыты оболочкой – от этого и темный оттенок.
Больше всего подобного вещества присутствует в следующих отделах:
- кора передних полушарий;
- таламус и гипоталамус;
- мозжечок и его ядра;
- базальные ганглии;
- черепно-мозговые нервы и ствол;
- столбы с отходящими от них спинномозговыми рогами.
Все пространство по периферии серых структур занимает белое вещество. В нем расположено огромное количество отростков нервных волокон, поверх которых размещена миелиновая оболочка.
Она и придает белый оттенок тканям.
Именно эти структуры в центральной нервной системе образуют проводниковые пути, по которым информационные сигналы перемещаются к зависимым органам, либо от них обратно к центральным структурам.
Основные типы белых волокон:
- ассоциативные – локализованы на разных участках спинномозговых нервов;
- восходящие – передают информацию от внутренних структур к коре полушарий;
- нисходящие – сигнал поступает от внутричерепных образований к спинномозговым рогам, а оттуда к внутренним органам.
Рассмотреть, как устроена нервная система, что такое белое вещество либо серое вещество, удобнее на обучающих макетах – подробные срезы с цветным изображением наглядно будут демонстрировать особенности расположения тканей и структурных единиц.
Немного о сером веществе
Серым клеткам в отличие от проводниковой функции белого вещества мозга присущи различные варианты задач:
- физиологические – образование и перемещение, а также получение и последующая обработка электрических импульсов;
- нейрофизиологические – речь и зрение, мышление и память с эмоциональными реакциями;
- психологические – формирование сути личности человека, его мировоззрения и мотивации с волей.
Многочисленные исследования специалистов позволили установить, чем образованы серое вещество и белые участки мозга, их роль в центральной нервной системе. Однако, и в наши дни остаются нерешенными многие загадки.
Тем не менее, были анатомически структурированы ядра серого вещества в топике внутричерепных полушарий и таковые структуры в спинном мозге.
По сути – они главный координационный центр, через который формируются человеческие рефлексы и высшая интеллектуальная деятельность.
К примеру, если знать, где находятся серое вещество коры и его зависимый орган, можно вызвать необходимую реакцию на раздражитель. Этим пользуются врачи для восстановления больных после некоторых неврологических заболеваний.
Безусловно, то, из чего состоят белое вещество и подкорковые ядра переднего отдела мозга будут напрямую обусловливать скорость передачи импульсов и их обработки. Этим люди и отличаются друг от друга. Поэтому все субкортикальные очаги в белом веществе должны рассматриваться отдельно.
Топография
Волокна серых и белых нейроцитов представлены, как в центральной, так и в периферической части нервной регуляции. Однако, если в спинном мозге серое вещество топографически локализовано в середине – напоминает очертаниями бабочку, которая окружает спинномозговой канал, то в черепном отделе оно, наоборот, покрывает главные полушария. Отдельные его участки – ядра, размещены и в глубине.
Белое же вещество локализовано вокруг «бабочки» в спинномозговой части мозга – нервные волокна, окруженные оболочками, а в центральном отделе – под корой, представляя отдельные белые скопления и тяжи.
Высокодифференцированные клетки серого вещества образуют кору головного мозга – плащ. Именно они представляют собой интеллект человека.
Увеличение площади коры возможно благодаря множеству складок – борозд и извилин. Толщина плаща неоднозначна – больше в районе центральной извилины.
Постепенное ее уменьшение можно наблюдать по направлению к спинному мозгу, переход в который обозначен как продолговатый мозг.
Процентное соотношение белого и серого вещества в разных отделах мозга неоднозначно. Как правило, безоболочечных белых скоплений больше. Принято выделять структурные отделы:
- передний – большие полушария, которые покрыты корой из серого вещества, внутри ядра с окружением из белого вещества;
- средний – множество черепно-мозговых ядер из темных клеток с проводящими путями из белого мозгового волокна;
- промежуточный – представлен таламусом, а также гипоталамусов, к которым перемещаются импульсы по множеству белых волокон к размещенным в них ядрам вегетативной системы;
- мозжечок – напоминает большие полушария в миниатюре по строению, поскольку можно выделить кору и подкорку, но не по функциональным обязанностям;
- продолговатый – преобладает серое вещество, которое представлено множеством ядер и мозговых центров.
Изучению представительства той или иной части тела в мозге посвящено множество научных работ. Однако, исследование их незаконченно – природа преподносит людям все новые открытия.
Функции
Благодаря сложному и уникальному строению нервной системы, вещество мозга в состоянии выполнять множество функциональных обязанностей. По сути, на него возложено управление всем многообразием происходящих внутри организма процессов.
Так, функциями белого вещества, бесспорно, являются принять и донести информацию с помощью нервных импульсов – как между отдельными участками головного либо спинного мозга, так и ними, как отдельными структурными звеньями сложной системы. Для того чтобы представить схему функциональных обязанностей белого вещества, необходимо выделить основные волокна:
- ассоциативные – отвечают за взаимосвязь разных зон коры одного из полушарий, к примеру, короткие белые ответвления несут ответственность за связь между близлежащими извилинами, тогда как длинные – за взаимодействие отдаленных областей коры;
- комиссуральные – белые волокна соединяют не только симметричные зоны, но и кору в отдаленных долях полушариях, что находит отражение в мозолистом теле и спайках, которые расположены непосредственно между крупными полушарными единицами;
- проекционные белые волокна – несут ответственность за качество связи коры большого мозга с нижерасположенными структурными звеньями, а также периферией, к примеру, доставку информации от двигательных нейронов и обратно к ним, либо от чувствительных клеток.
Анатомическое строение и расположение обусловливает и функции серого вещества. Оно одновременно в состоянии создавать и обрабатывать нервные импульсы.
За счет них происходит управление всеми внутренними жизненно важными процессами – автоматически в дыхательной, сердечнососудистой, пищеварительной и мочевыделительной системах.
Это так называемое сохранение постоянства внутренней среды, чтобы человек как биологическая единица смог сохранить себя единым целым. Тогда как отличительной функцией серого вещества можно назвать развитие и преумножение интеллекта.
Кора головного мозга имеется у каждого живого человека. Тем не менее, уровень развития умственных способностей у всех различен. Принятием, обработкой и сохранением информации занимаются именно серые клетки коры больших полушарий мозга.
Отличительные черты
Для четкого понимания того, каковы важные отличия серого и белого веществ мозга, что они собой представляют и их функциональные особенности, специалистами были разработаны критерии. Основные представлены в таблице:
Критерии | Серое вещество | Белое вещество |
строение | ядра нервных клеток и короткие отростки | длинные миелинизированные аксоны |
локализация | преимущественно в центральной нервной системе | преимущественно на периферии |
потребление кислорода | 3–5 мл/мин | менее 1 мл/мин |
функция | регулирующая, рефлекторная | проводящая |
удельный вес | 40% от всего веса | более 60% веса |
В целом, понятия исключительно серого или белого в общей картине головного или же спинного мозга как такового не существует – настолько тесно переплетены анатомически и функционально эти структуры органа. Без одного не может существовать другого.
Условно нервную клетку можно представить гостиницей, в которой люди остановились отдохнуть и обменяться новостями. Это серая субстанция мозга. Однако, после этого они уезжают дальше – посетить другие интересные места. Для этого им необходимы качественные скоростные дороги – проводящие волокна белого вещества.
И если без темных ядер подкорковых структур и плаща больших полушарий люди вовсе не в состоянии выполнять высшие нервные действия – память, мышление, обучение, то без полноценной белой материи не представляется возможным быстро принимать решения или реагировать на происходящие изменения в окружающем мире.
Возможные заболевания
Любые нарушения анатомической целостности нервной клетки не проходят бесследно. Однако, на тяжесть патологического расстройства и его продолжительность напрямую влияет характер провоцирующего фактора. Так, при ухудшении мозгового кровотока из-за атеросклеротической бляшки, которое приводит к постгипоксическим изменениям головного мозга – ишемического инсульта характерно:
- локальное ощущение онемения;
- частичная/полная утрата движения в какой-либо части тела;
- мышечная слабость.
Если же травмы приводят к гибели большого участка коры, человек вовсе утрачивает одну из своих высших нервных функций, становится инвалидом. В случае опухолевого поражения подкорковых структур могут возникать расстройства в регулировании зависимых от них структур – вегетативные отклонения, терморегуляция, эндокринные расстройства.
Безусловно, заболевания корковых структур заметны сразу же. Между тем, атрофия белых волокон может протекать скрыто, к примеру, при дисциркуляторном энцефалопатии. Вначале страдают мелкие участки мозга, что отражается на повседневной деятельности человека. Позже процесс охватывает все сферы мозговой деятельности – к примеру, болезнь Альцгеймера, рассеянный склероз.
При проведении магнитно-резонансной томографии могут быть выявлены единичные очаги в белом веществе лобных долей – лейкоареоз, или же их локализация в мозжечке. Тогда помимо интеллектуальных расстройств больному свойственны двигательные сбои.
Подбором оптимальных схем лечения должен заниматься невропатолог с учетом анатомических и функциональных особенностей серого/белого вещества головного мозга.
Источник: https://nerv-info.ru/nervnaya-sistema/funktsii-serogo-i-belogo-veshhestva-golovnogo-mozga-osobennosti-zabolevanij
Классификация борозд
(по Д.Н.Зёрнову)
Первичные борозды– появляются
раньше других в фило- и онтогенезе,
отличаются постоянством.
К первичным бороздам относятся:
- все междолевые борозды
- центральная
- латеральная
- теменно-затылочная
-
некоторые борозды внутри долей
- предцентральная
- обонятельная
- борозда мозолистого тела
- гиппокампальная
- поясная
- верхняя височная
- шпорная
Вторичные борозды
Остальные внутридолевые борозды, имеющие
название. Могут отличаться у разных
людей.
Третичные борозды
Мелкие борозды, не имеющие названий.
Индивидуальны для каждого человека
Кора головного мозга – это тонкий
слой серого вещества на поверхности
полушарий конечного мозга. Толщина коры
– 1,5 – 4,5 мм, площадь коры ≈ 2200 см², объем
коры ≈ 600 см³.
Количество нейронов в
коре ≈ 10¹º + глиальные клетки, количество
которых пока точно неизвестно. Нейроны,
глиальные клетки, миелиновые волокна
в коре располагаются в виде слоев.
Кора
прошла сложный путь эволюционного
развития, в зависимости от филогенетического
возраста в ней выделяют древнюю, старую
и новую кору.
Paleocortex – древняя
кора (обонятельный мозг) состоит из
трех-пяти слоев, не полностью отделена
от базальных ядер. Возникла в связи с
анализом обонятельных ощущений. К
древней коре относятся следующие
структуры:
-
обонятельная луковица;
-
обонятельный тракт;
-
обонятельный треугольник;
-
переднее продырявленное вещество;
-
прозрачная перегородка;
-
ряд извилин и областей, расположенных на нижней и медиальной поверхностях лобной доли и в полюсе височной доли, в том числе, крючок арагиппокампальной извилины.
Между древней иновойкорой естьпереходная кора, расположенная на
нижней поверхности лобной доли, в полюсе
височной доли и в островке.
Archiocortex – старая
кора(лимбическая часть обонятельного
мозга) состоит из трех-пяти слоев,
включает следующие структуры:
- гиппокамп;
- зубчатую извилину;
- серый покров мозолистого тела.
-
Между старой и новой корой имеется
переходная кора, которая включает
поясную и парагиппокампальную извилины. -
Древняяистараякора у человека
составляют около4 %от общего объема
коры. -
Neocortex– новая кора
– у человека занимает около 96% всей
коры, состоит из 6 слоев, которые детально
изучаются в курсе гистологии. - I– молекулярный слой.
-
II– наружный зернистый
слой. -
III– наружный пирамидный
слой. -
IV– внутренний зернистый
слой – главный чувствительный слой
коры. -
V– внутренний пирамидный
слой – главный двигательный слой коры. - VI– полиморфный слой.
Локализация функций в коре головного мозга
Кору головного мозга делят на 4
функциональные категории:
-
Первичная моторная кора.
-
Первичная сенсорная кора.
-
Унимодальная ассоциативная кора.
-
Полимодальная ассоциативная.
Первичная моторная кора:
- Передняя центральная извилина (4 поле Бродмана). Функция: контроль произвольных движений
Первичная сенсорная кора
Осуществляет первичный анализ одного
вида (одной модальности) чувствительности,
получает информацию от чувствительных
переключательных ядер таламуса (за
исключением обонятельной).
-
Первичная соматосенсорная кора (задняя центральная извилина – 1,2,3 поля Бродмана) получает информацию от VPLиVPMталамуса.
-
Первичная зрительная кора (шпорная борозда, 17 поле) – из латерального коленчатого тела.
-
Первичная слуховая кора (извилины Гешля, 41 и 42 поля) – из медиального коленчатого тела.
-
Первичная вкусовая кора (задняя центральная извилина, островок) – из VPMталамуса.
-
Вестибулярная кора (внутритеменная борозда – поле 2v, дно центральной борозды – поле 3а) – изVPLиVPIталамуса.
-
Первичная обонятельная кора (крючок парагиппокампальной извилины, 28 и 34 поля) получает прямые проекции от обонятельной луковицы (исключение из правила).
Унимодальная ассоциативная кора
обрабатывает информацию одной
модальности на более высоком уровне.
Получает информацию из первичной
сенсорной коры (соответствующей
модальности).
- Зрительная ассоциативная кора (поля 18, 19, 20, 21, 37) на основании базовых зрительных элементов создается целостное (зрительное) восприятие окружающего мира (зрительная память, узнавание лиц).
- Слуховая ассоциативная кора (поле 22), например: узнавание мелодии.
- Соматосенсорная ассоциативная кора (поля 5, 7) – узнавание предметов на ощупь (стереогноз), ощущение своего тела (схема тела).
- Двигательная ассоциативная кора (поля 6,8) планирование и пространственно-временная организация произвольных движений).
Поражение унимодальной ассоциативной
коры
- Апраксия (ассоциативная моторная и соматосенсорная кора) – неспособность совершать сложные целенаправленные движения, выработанные практикой.
- Агнозии (неспособность интерпретировать чувствительную информацию):
- Зрительная (в т.ч. цветовая)
- Слуховая
- Тактильная
- Вкусовая
- Обонятельная
Мультимодальная ассоциативная кора
получает и обрабатывает информацию
нескольких различных модальностей и
создает комплексное представление об
окружающем мире, ощущение пространства.
Отвечает за возможность общения с
помощью речи, долговременное планирование
поведения (жизни) на основе имеющегося
опыта, творчества и другие проявления
высшей нервной деятельности.
Источник: https://studfile.net/preview/4478859/page:14/
Кора больших полушарий головного мозга
Субстрат головного мозга состоит из веществ – белого и серого. Последнее составляют нейроциты, безмиелиновые волокна и глиальные клетки; оно расположено в некоторых отделах глубинных мозговых структур, из этого вещества сформирована кора больших полушарий (а также мозжечка).
Каждое полушарие разделяется на пять долей, четыре из которых (лобная, теменная, затылочная и височная) примыкают к соответствующим костям черепного свода, а одна (островковая) находится в глубине, в ямке, которая разделяет лобную и височную доли.
Кора большого мозга имеет толщину в 1,5–4,5 мм, ее площадь увеличивается за счет присутствия борозд; она связана с другими отделами ЦНС, благодаря импульсам, которые проводят нейроны.
Полушария достигают примерно 80% от общей массы головного мозга. Они осуществляют регуляцию высших психических функций, тогда как мозговой ствол – низшие, которые связаны с деятельностью внутренних органов.
Три основные области выделяют на полушарной поверхности:
- выпуклая верхнелатеральная, которая примыкает к внутренней поверхности черепного свода;
- нижняя, с располагающимися передними и средними отделами на внутренней поверхности черепного основания и задними в области намета мозжечка;
- медиальная расположена у продольной щели мозга.
Особенности устройства и деятельности
Кора большого мозга подразделяется на 4 вида:
- древняя – занимает чуть более 0,5% всей поверхности полушарий;
- старая – 2,2%;
- новая – более 95%;
- средняя – примерно 1,5%.
Филогенетически древняя кора большого мозга, представленная группами крупных нейронов, оттесняется новой к основанию полушарий, становясь узкой полоской. А старая, состоящая из трех клеточных слоев, смещается ближе к середине.
Главная область старой коры – гиппокамп, являющийся центральным отделом лимбической системы.
Средняя (промежуточная) кора представляет собой образование переходного типа, так как трансформация старых структур в новые осуществляется постепенно.
Кора головного мозга у человека, в отличие от таковой у млекопитающих, также ответственна за согласованную работу внутренних органов. Такое явление, при котором, возрастает роль коры в осуществлении всей функциональной деятельности организма, носит название кортикализация функций.
Одна из особенностей коры – ее электрическая активность, происходящая спонтанно.
Нервные клетки, расположенные в этом отделе, обладают определенной ритмической активностью, отражающей биохимические, биофизические процессы.
Активность обладает различной амплитудой и частотой (альфа-, бета-, дельта-, тета-ритмы), что зависит от влияния многочисленных факторов (медитации, фазы сна, переживания стресса, наличия судорог, новообразования).
Структура
- Кора головного мозга представляет собой многослойное образование: каждый из слоев имеет свой определенный состав нейроцитов, конкретную ориентацию, расположение отростков.
- Систематическое положение нейронов в коре носит название «цитоархитектоника», расположенные в определенном порядке волокна – «миелоархитектоника».
- Кора больших полушарий головного мозга состоит из цитоархитектонических шесть слоев.
- Поверхностный молекулярный, в котором нервных клеток не очень много. Их отростки расположены в нем самом, и они не выходят за пределы.
- Наружный зернистый сформирован из пирамидальных и звездчатых нейроцитов. Отростки выходят из этого слоя и идут в последующие.
- Пирамидальный состоит из пирамидных клеток. Их аксоны направляются вниз, где оканчиваются или формируют ассоциативные волокна, а дендриты идут вверх, во второй слой.
- Внутренний зернистый образован звездчатыми клетками и малыми пирамидными. Дендриты идут в первый слой, боковые отростки разветвляются в пределах своего слоя. Аксоны протягиваются в верхние слои или в белое вещество.
- Ганглионарный образован большими пирамидными клетками. Здесь находятся самые крупные нейроциты коры. Дендриты направлены в первый слой или распределены в своем. Аксоны выходят из коры и начинают являться волокнами, связывающими различные отделы и структуры ЦНС между собой.
- Мультиформный – состоит из различных клеток. Дендриты идут к молекулярному слою (некоторые только до четвертого или пятого слоев). Аксоны направляются в вышележащие слои или выходят из коры в качестве ассоциативных волокон.
Кора головного мозга разделяется на области – так называемая горизонтальная организация. Всего их насчитывается 11, и они включают в себя 52 поля, каждое из которых имеет свой порядковый номер.
Вертикальная организация
Существует и вертикальное разделение – на колонки нейронов. При этом маленькие колонки объединяются в макроколонки, которые называют функциональным модулем.
В основе таких систем находятся звездчатые клетки – их аксоны, а также горизонтальные связи их с боковыми аксонами пирамидальных нейроцитов. Все нервные клетки вертикальных колонок реагируют на афферентный импульс одинаково и вместе посылают эфферентный сигнал.
Возбуждение в горизонтальном направлении обусловлено деятельностью поперечных волокон, которые следуют от одной колонки к другой.
Впервые обнаружил единицы, которые объединяют нейроны различных слоев по вертикали, в 1943г. Лоренте де Но – с помощью гистологии. Впоследствии это было подтверждено с помощью методов электрофизиологии на животных В. Маунткаслом.
Развитие коры во внутриутробном развитии начинается рано: уже в 8 недель у эмбриона появляется корковая пластина. Вначале дифференцируются нижние слои, а в 6 месяцев у будущего ребенка появляются все поля, которые присутствуют и у взрослого человека.
Цитоархитектонические особенности коры к 7 годам полностью формируются, но тела нейроцитов увеличиваются еще до 18. Для образования коры необходимо согласованное перемещение и деление клеток-предшественниц, из которых появляются нейроны.
Установлено, что на этот процесс влияет специальный ген.
Горизонтальная организация
Принято разделять зоны коры головного мозга на:
- ассоциативные;
- сенсорные (чувствительные);
- моторные.
Учеными при изучении локализованных участков и их функциональных особенностей применялись разнообразные способы: раздражение химическое или физическое, частичное удаление мозговых участков, выработка условных рефлексов, регистрация биотоков мозга.
Чувствительные
Эти области занимают примерно 20% коры. Поражение таких зон ведет к нарушению чувствительности (снижение зрения, слуха, обоняния и т. п.). Площадь зоны напрямую зависит от количества нервных клеток, которые воспринимают импульс от определенных рецепторов: чем их больше, тем выше сензитивность. Выделяют зоны:
- соматосенсорную (отвечает за кожную, проприоцептивную, вегетативную чувствительность) – она расположена в теменной доле (постцентральная извилина);
- зрительную, двухстороннее повреждение которое приводит к полной слепоте, – находится в затылочной доле;
- слуховую (расположена в височной доле);
- вкусовую, находящуюся в теменной доле (локализация – постцентральная извилина);
- обонятельную, двухстороннее нарушение которой приводит к потере обоняния (расположена в гиппокамповой извилине).
Нарушение слуховой зоны не приводит к глухоте, но появляются другие симптомы. Например, невозможность различения коротких звуков, смысла бытовых шумов (шагов, льющейся воды и т. п.
) при сохранности различия звуков по высоте, длительности, тембру. Также может происходить амузия, заключающаяся в неспособности узнавать, воспроизводить мелодии, а также различать их между собой.
Музыка также может сопровождаться неприятными ощущениями.
Импульсы, идущие по афферентным волокнам с левой стороны тела, воспринимаются правым полушарием, а с правой стороны – левым (повреждение левого полушария вызовет нарушение чувствительности с правой стороны и наоборот). Это связано с тем, что каждая постцентральная извилина связана с противоположной частью тела.
Двигательные
Моторные участки, раздражение которых вызывает движение мускулатуры, располагаются в передней центральной извилине лобной доли. Двигательные зоны сообщаются с сенсорными.
Двигательные пути в продолговатом мозге (и частично в спинном) образуют перекрест с переходом на противоположную сторону.
Это приводит к тому, что раздражение, которое возникает в левом полушарии, поступает в правую половину туловища, и наоборот.
Поэтому поражение участка коры одного из полушарий ведет к нарушению двигательной функции мышц с противоположной стороны туловища.
Моторная и сенсорная области, которые расположены в районе центральной борозды, объединяются в одно образование – сенсомоторную зону.
Неврология и нейропсихология накопили множество сведений о том, как поражение этих областей приводит не только к элементарным двигательным расстройствам (параличам, парезам, треморам), но и к нарушениям произвольных движений и действий с предметами – апраксиям. При их появлении могут нарушаться движения во время письма, происходить расстройства пространственных представлений, появляться бесконтрольные шаблонные движения.
Ассоциативные
Эти зоны ответственны за связывание поступающей сенсорной информации с той, которая была получена ранее и хранится в памяти. Кроме того, они позволяют сравнивать между собой информацию, которая идет от различных рецепторов. Ответная реакция на сигнал формируется в ассоциативной зоне и передается в зону двигательную.
Таким образом, каждая ассоциативная область отвечает за процессы памяти, научения и мышления. Крупные ассоциативные зоны находятся рядом с соответствующими функционально сенсорными зонами.
К примеру, какая-либо ассоциативная зрительная функция контролируется зрительной ассоциативной зоной, которая расположена рядом с сенсорным зрительным участком.
Установление закономерностей работы мозга, анализ его локальных нарушений и проверку его активности осуществляет наука нейропсихология, которая находится на стыке нейробиологии, психологии, психиатрии и информатики.
Особенности локализации по полям
Кора большого мозга пластична, что сказывается на переходе функций одного отдела, если произошло его нарушение, в другой.
Это обусловлено тем, что анализаторы в коре имеют ядро, где происходит высшая деятельность, и периферию, которая отвечает за процессы анализа и синтеза в примитивном виде.
Между ядрами анализаторов находятся элементы, которые принадлежат разным анализаторам. Если повреждение касается ядра, за его деятельность начинают отвечать периферические составляющие.
Таким образом, локализация функций, которыми обладает кора головного мозга, – понятие относительное, так как определенных границ не существует. Тем не менее, цитоархитектоника предполагает наличие 52 полей, которые сообщаются друг с другом проводящими путями:
- ассоциативными (этот тип нервных волокон отвечает за деятельность коры в области одного полушария);
- комиссуральными (связывают симметричные области обоих полушарий);
- проекционными (способствуют сообщению коры, подкорковых структур с другими органами).
Итак, строение коры головного мозга предполагает рассмотрение ее в горизонтальной и вертикальной ориентации. В зависимости от этого, выделяют вертикальные колонки нейронов и зоны, расположенные в горизонтальной плоскости.
Основные функции, которые выполняет кора, сводятся к осуществлению поведения, регуляции мышления, сознания.
Кроме того, она обеспечивает взаимодействие организма с внешней средой и принимает участие в контроле работы внутренних органов.
- Оцените эту статью:
Источник: https://mozgius.ru/stroenie/kora-bolshih-polusharij.html